

FV3 within the NASA GEOS modeling and assimilation system

GMAO

GMAO Modeling Activities

- 1. Weather Analysis and Prediction
 - near-realtime analyses, assimilation products, and forecasts
 - In support of NASA's satellite missions and field experiments
 - Generating near-real time atmospheric products for a broad community of users.

2. Seasonal-Decadal Analysis and Prediction

 Coupled Earth-System models and analyses of subseasonal to seasonal variability in support of:

National Multi-Model Ensemble (NMME) project Chemistry-Climate Model (CCM) Coupled Model Intercomparison Project (CMIP)

3. Reanalysis for Climate

- Modern-Era Retrospective analysis for Research and Applications, Version 2
 (MERRA-2)
- Global downscaling of reanalyses

4. Global Mesoscale Modeling

- Global simulations with spatial resolutions at the forefront of model and computing capability
 - These form the basis for Observing System Simulation Experiments.

GEOS Modeling & Assimilation Portfolio

Forward Processing System	Satellite-Era Reanalysis 1979 - Present	EOS-Era Reanalysis 2000 – Present	Nature Runs (OSSEs)	Seasonal Forecast System	Coupled Simulations (Decadal, CMIP6)
3D-Hybrid Ensemble-Var (25km) 32 ensemble members Hydrostatic FV3 1-Moment Cloud Microphysics	MERRA (50km) Ending Feb. 2016 3D-Var Hydrostatic FV-LatLon ~200 TB MERRA-2 (50km) 3D-Var Hydrostatic FV3 Aerosols and CO, SO ₂ , O ₃ 1-Moment Cloud Microphysics ~400 TB	M2R12K (12km) MERRA2 downscaled to 12 km Aerosols CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic FV3 1-Moment Cloud Microphysics	G5NR (7km) Simulated 2005-2007 Aerosols, CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic FV3 1-Moment Cloud Microphysics 4 PB	MERRA-2 replay 50km, 40L ocean analysis 31 members per month	GEOS CMIP (25km) 25km Atmosphere 25km 50L ocean Include aerosols greenhouse gases Hydrostatic FV3 2-Moment Cloud Microphysics Planning/discussion Align with "MERRA-3" SFS and strategic direction of ESD
e5131 GEOS-5 FP system Terminated 1Q-2017				M2-driven EnOI ocean analysis	
4D-Hybrid Ensemble-Var (12km) 32 ensemble members Atmosphere, ocean surface Hydrostatic FV3 1-Moment Cloud Microphysics In Production 1Q-2017		IESA (12km) 4D-Hybrid Ensemble-Var 32 ensemble members atmosphere, land, ocean surface Aerosols, CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic FV3 1-Moment Cloud Microphysics 5,000 cores; 40 simulation days/day 150 days total wallclock	G5NR-CHEM (12km) Simulated 2013-2014 Replay to M2R12K Full Reactive Chemistry	GEOS SFS (25km) Alignment with "MERRA-3" 25km, 50L ocean analysis System design under review	
	MERRA-2 GMI replay (50km) Replay GMI Chemistry 1 streams, 1,000 cores each 12 to 18 months ~ 1 PB		Non-Hydrostatic FV3 1-Moment Cloud Microphysics 1 PB of data 40-FY2016	FY2020 target	
4D Ensemble-Var (9km) ~100 ensemble members Atmosphere, ocean surface Non-Hydrostatic FV3 2-Moment Cloud Microphysics Grell-Freitas Scale-Aware Convection FY2018 target		~3 to 4 PB of data	14,72525		
	Coupled Reanalysis ("MERRA-3") Atmosphere-land-ocean-cryosphere (alignment with SFS and CMIP6) FY2020 target	IESAR4K (4km) IESA Downscaled to 4km downscaling evaluation for NCA Aerosols, CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic FV3 2-Moment Cloud Microphysics 5,000 cores; 40 simulation days/day	G6NR (1-3km) Simulated 2015 Aerosols CO ₂ , CO, SO ₂ , O ₃ , CH ₄ Non-Hydrostatic FV3 2-Moment Cloud Microphysics ~4 PB	Past GMAO core projects Core GMAO projects in	
				production or evaluation. Pathfinding projects toward GMAO core efforts.	
		150 days total wallclock ~3 to 4 PB of data	Planning/evaluation	Projects undergoing GMAO discussion/planning.	

GEOS Atmospheric Model

Finite Volume Cubed-Sphere (FV3 collaboration with NOAA GFDL)

- Split explicit time-stepping (C-D grid)
- Monotonic & Non-Monotonic advection schemes
- Vertically Lagrangian
- Hydrostatic or Non-Hydrostatic

Single-Moment or **Two-Moment** moist cloud microphysics options

Relaxed Arakawa Schubert Convection (stochastic Tokioka entrainment limiter)

Grell Freitas and UW shallow convection options

Chou Suarez or RRTMG radiation options

GOCART or **MAM** chemistry and aerosol implementations

ESMF compliant (via MAPL to standardize the use of the ESMF throughout GEOS)

MPI parallelism with SGI MPT (Intel-MPI and MVAPICH-2 options)

- Hybrid MPI+OpenMP directives available in FV3
- Explicit use of SHMEM shared memory throughout GEOS via MAPL

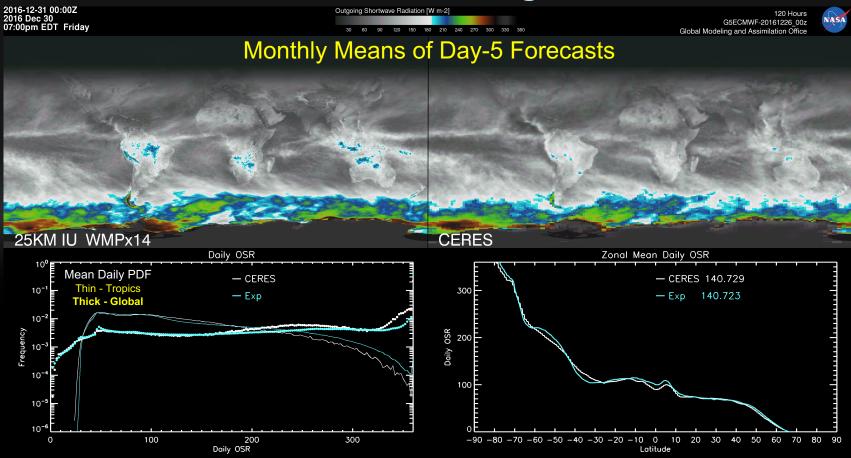
GPU implementation (optional build via PGI Fortran within the production code)

GMAO

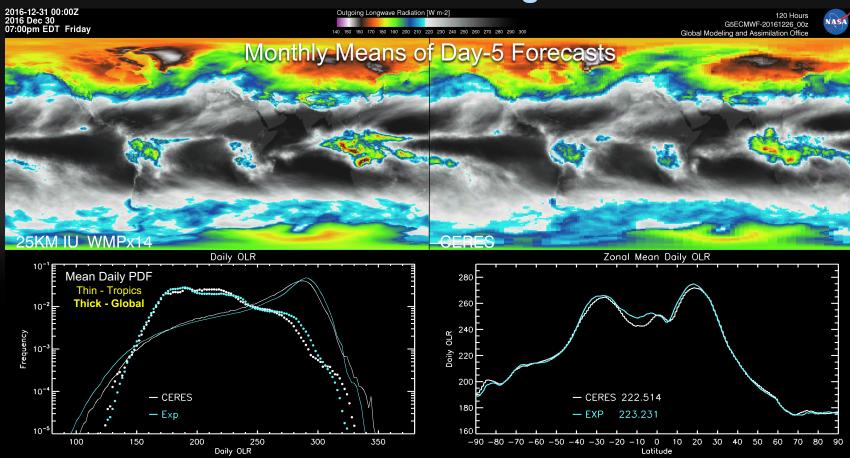
gmao.gsfc.nasa.gov

GEOS Modeling Applications

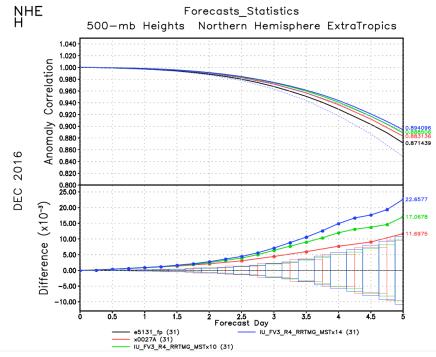
Modeling	Current Capability		Year 2020-2025		Year 2025-2030	
Component	Resolution	Cores	Resolution	Cores	Resolution	Cores
Single Column	72 Levs	1	132 Levs	1	264 Levs	1
Radiative-Convective- Equilibrium Large-Eddy	500 m	1,000	10-100 m	500,000	1-10 m	1 million
Pioneering Global Embedded-Regional OSSEs	1-5 km 72 Levels	30,000	500 m – 1 km 132 Levels	10 million	100-500 m 264 Levels	1 billion
Deterministic Medium-Range	10-15 km <i>72 Levels</i>	6,000	3-7 km <i>132 Levels</i>	600,000	1-3 km <i>264 Levels</i>	6 million
Seasonal	50 km Ocn 50 km Atm	100	25 km Ocn 25 km Atm	800	10 km Ocn 10 km Atm	16,000
Climate/Reanalysis	50 km	100	10-25 km	8,000	5-10 km	100,000



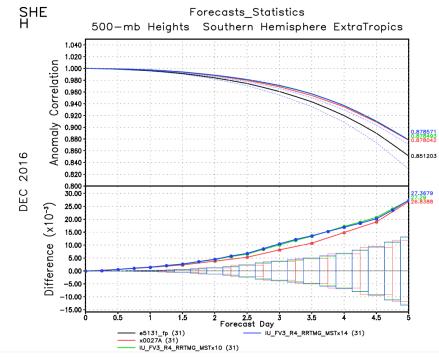
GEOS Tuning Procedures


- Reforecasting
 - 10-day forecasts at 50, 25, and 12-km resolutions
 - Two Seasons (DEC-JAN) and (JUL-AUG)
 - 1200 days of simulation examined at various lead times (1- to 10-days)
 - Can finely tune the model
 - cloud radiation properties to observations (IR and CERES)
 - water vapor and precipitation to observations (SSMI and TRMM)
 - looking closely at PDFs on short timescales (30 minutes to daily)
 - Examine impact on anomaly correlation and RMS
- 30-year Ensemble of Seasonal Model Intercomparisons (EMIP)
 - A rapid turnaround on seasonal climate analysis (DJF & JJA) at 50-km resolution
- 30-year AMIP
 - Climate resolution at 50-km resolution
- Fully Cycled DAS
 - At NWP resolutions 25- to 12-km resolutions

GEOS Reforecasting Results



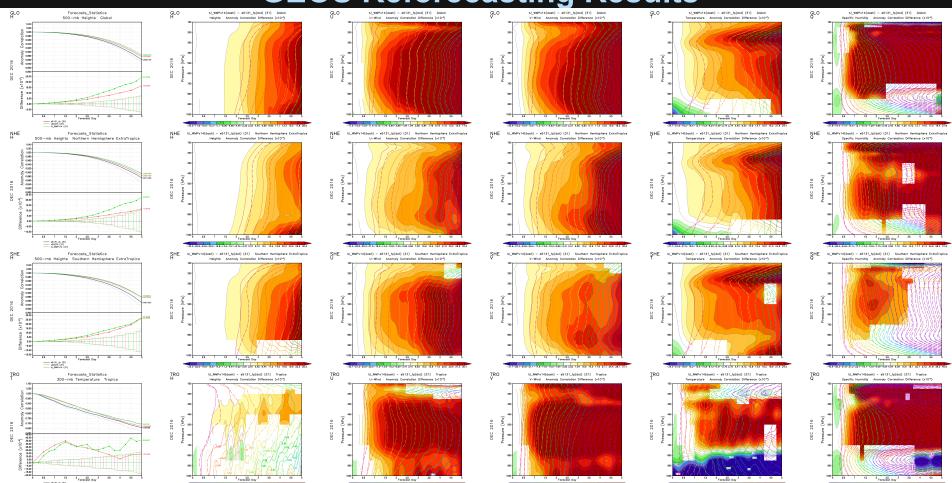
GEOS Reforecasting Results



GEOS Reforecasting Results

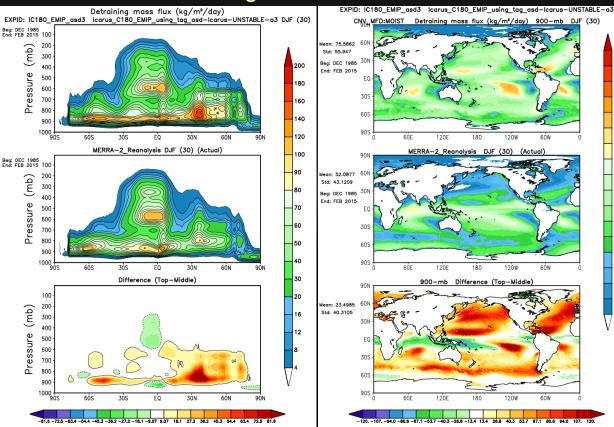
e5131_fp - 25km 3d-Hybrid + FV3 (*Production system at the time*) x0027A - 25km 4d-Hybrid EnsVar + GMTED topography & GWD tuning

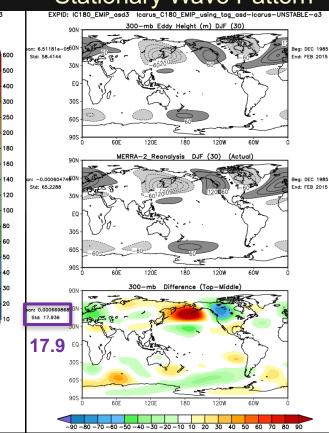
x10/x14 – Reforecasting with RRTMG + NGGPS FV3 + Moist cloud tuning



e5131_fp - 25km 3d-Hybrid + FV3 (Production system at the time)

x0027A – 25km 4d-Hybrid EnsVar + GMTED topography & GWD tuning x10/x14 – Reforecasting with RRTMG + NGGPS FV3 + Moist cloud tuning

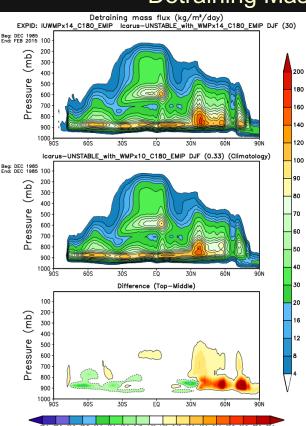

GEOS Reforecasting Results

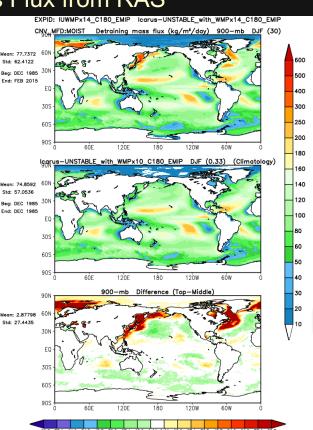


GEOS 30-Year Ensemble AMIP Results (MERRA-2 to x0027A)

Detraining Mass Flux from RAS

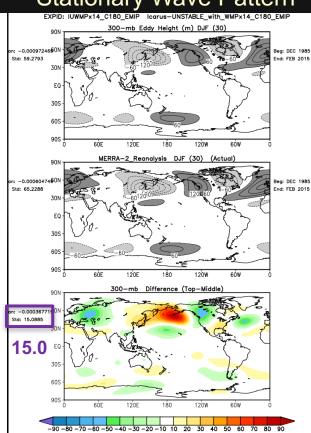
Stationary Wave Pattern





80

GEOS 30-Year Ensemble AMIP Results


Detraining Mass Flux from RAS

(x0027A to x14)

Stationary Wave Pattern

FV3 c720 Namelist Settings in GEOS

hydrostatic = .T.

dt = 225s k_split = 2 n_split = 6

tau = 0. rf_cutoff = 8.e2

n_sponge = 9 d2_bg_k1 = 0.16 d2_bg_k2 = 0.02 fv sg adj = 0.0

z_tracer = .T. fill = .T. Hydrostatic FV3

(112.5s Adv/Remap DT) (18.75s small DT)

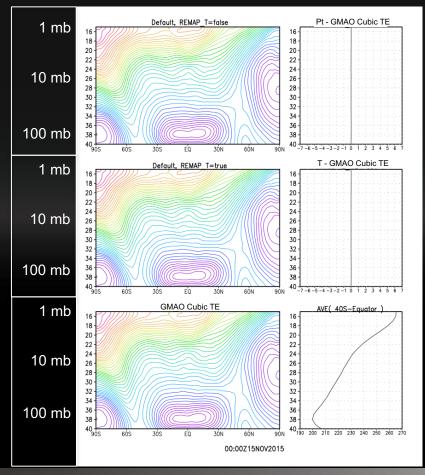
Rayleigh Friction off (done in GEOS moist physics)

9 Sponge Layers Disabled Dry Conv Adj

Tracer Courant Limit by Level (Filling negative tracers)

gmao_cubic = .T. kord_tm = 9 kord_mt = 9 kord_wz = 9 kord_tr = 9 consv te = 1.

hord_mt = 8 hord_vt = -8 hord_tm = -8 hord_dp = -8 hord_tr = -8


nord = 2 dddmp = 0.2 d4_bg = 0.15 d2_bg = 0.0 d_ext = 0.0 vtdm4 = 0.0 do_vort_damp = .F. d con = 0. Cubic Spline Total Energy Conservative Vertical Remapping (using GMAO_CUBIC)

Monotonic Advection Schemes

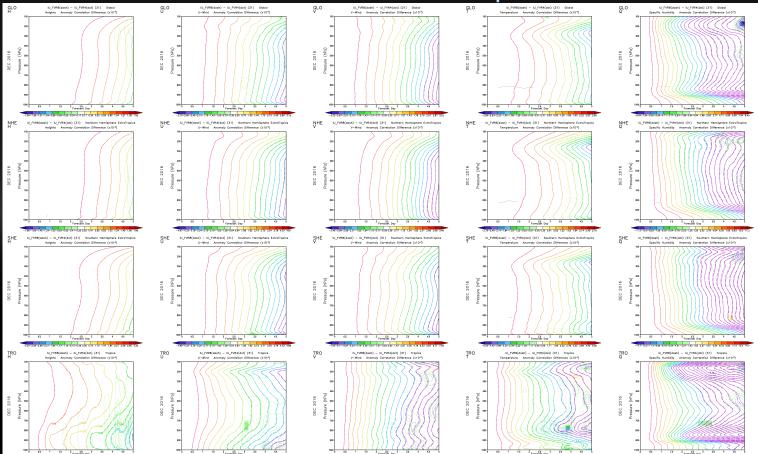
6th order divergence damping (No Vorticity Damping)

FV3 GMAO Cubic TE Remapping

FV3 Cubic PT Remap DZ noise

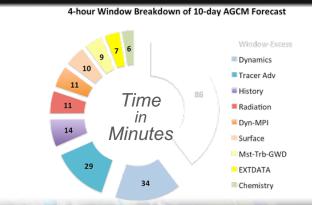
FV3 Cubic T Remap

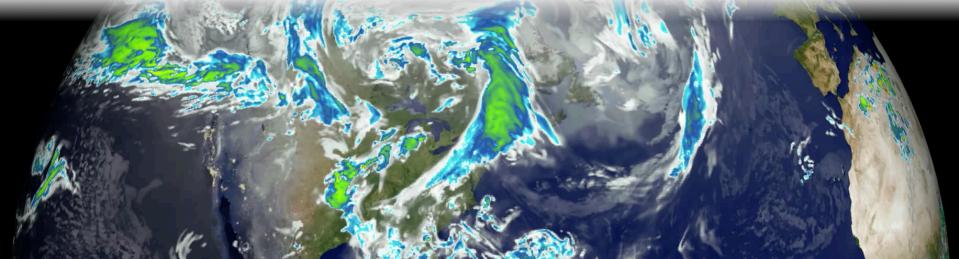
DZ noise


GMAO Cubic TE Remap

No DZ noise

FV3 R4 vs R8 Skill Comparison


The GEOS 12-km Forward Processing System


GOES forward processing assimilation and deterministic forecast system

Production Configuration:

12-km with 72-levels on 5400 Xeon Haswell Cores

4-D Hybrid Ensemble-Variational Data Assimilation Hydrostatic FV3 Dynamics GOCART Aerosols Assimilation with GAAS (57 tracers)

The MERRA-2 Reanalysis

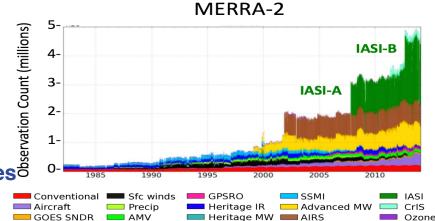
Modern-Era Retrospective Analysis for Research and Applications

[MERRA-2 1980-present]

Production Configuration:

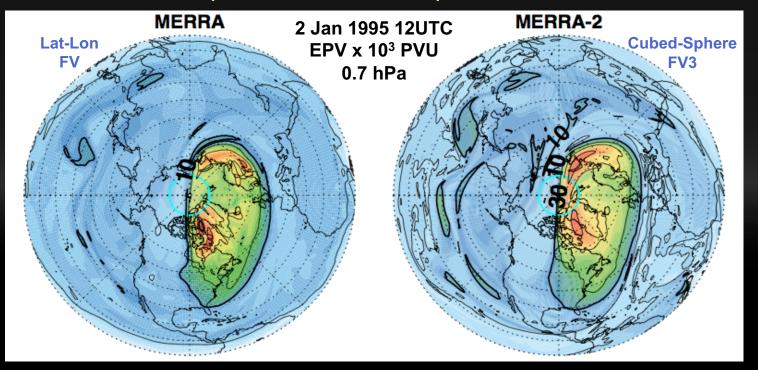
50-km with 72-levels in 4 streams of 100 Xeon Cores Modern-Era Retrospective Analysis for

3-D Variational Data Assimilation


An intermediate reanalysis of the satellite era

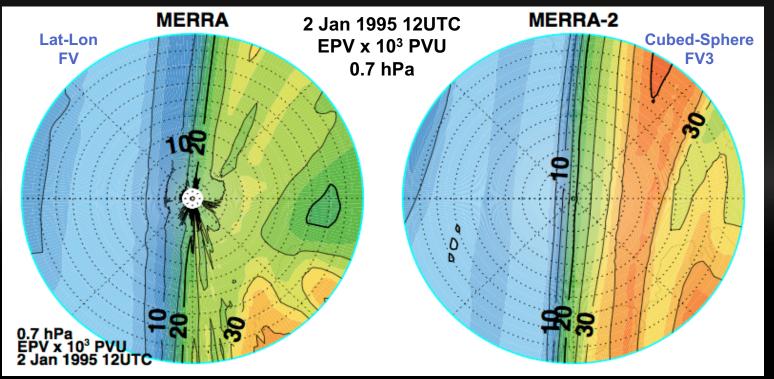
- Includes new satellite observations not available to MERRA
- Reduces biases and imbalances in the water cycle
- Reduces some spurious trends and jumps related to changes in the observing system

Progress toward an Integrated Earth System Reanalysis


- Joint assimilation of meteorological and aerosol observations
- Improves aspects of the stratosphere, including ozone
- Improves aspects of the cryosphere, including glaciated surfaces

The MERRA-2 Reanalysis

Cross Polar Flow (Polar Wind > 170 ms⁻¹) Influence of the Pole on EPV

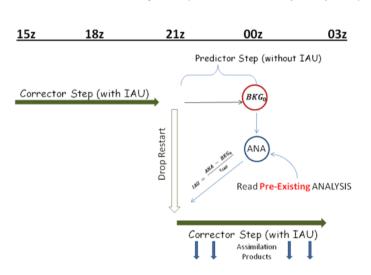

MERRA-2 has two high EPV regions (red) merging over the pole, created by downward motion, While MERRA has two weaker EPV regions with low EPV values at the pole.

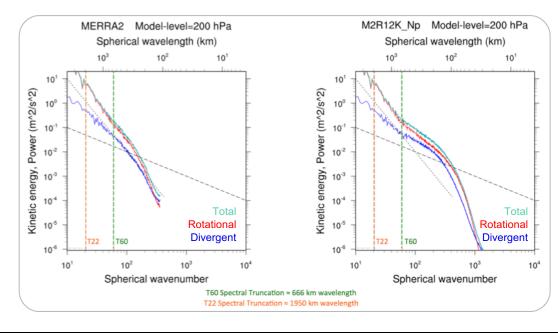
The MERRA-2 Reanalysis

Cross Polar Flow (Polar Wind > 170 ms⁻¹) Influence of the Pole on EPV

80°N to the North Pole

MERRA diagnostic EPV contains small-scale structures radiating from the pole.

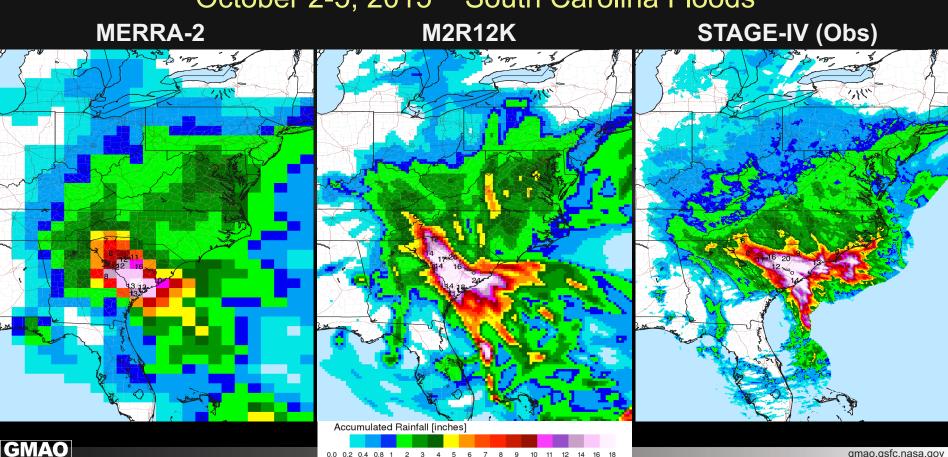

MERRA-2 12-km Global Downscaling (2000-2016)


MERRA-2 Replay at 12.5-Km (M2R12K)

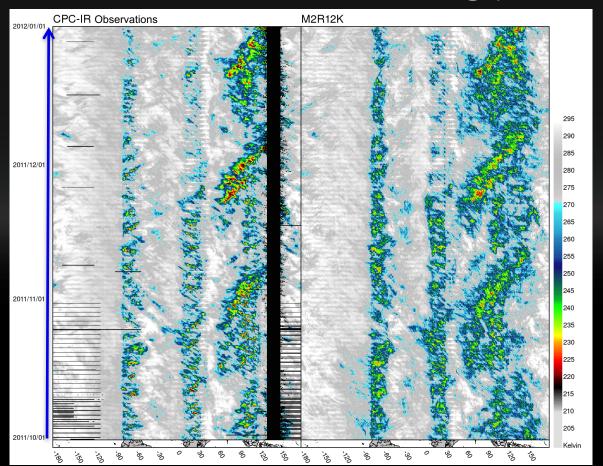
'Replay' Using MERRA-2 with IAU

Only forcing at scales T60 and longer

GEOS-5 REPLAY w/IAU (Incremental Analysis Update)

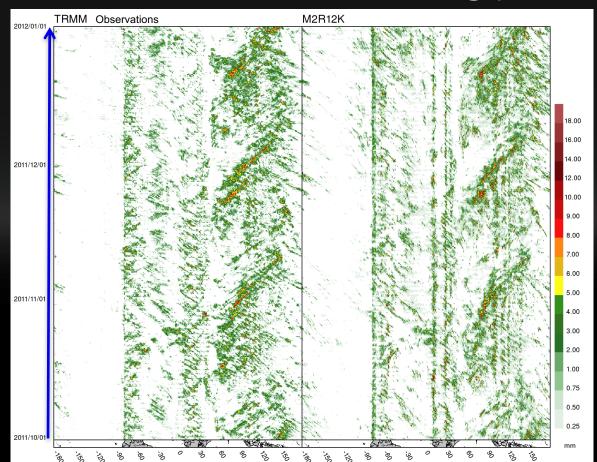


gmao.gsfc.nasa.gov


MERRA-2 12-km Global Downscaling (2000-2016) October 2-5, 2015 South Carolina Floods

MERRA-2 12-km Global Downscaling (2000-2016)

2011-12 DYNAMO MJO



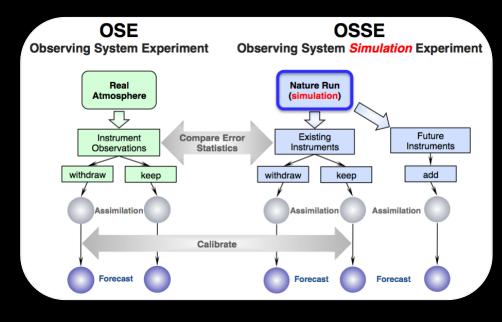
11-micron
Brightness
Temperature
5S:5N

MERRA-2 12-km Global Downscaling (2000-2016)

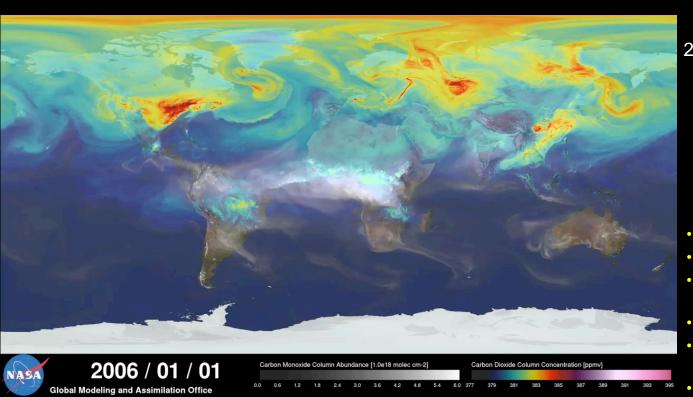
2011-12 DYNAMO MJO

Hourly Precipitation 5S:5N

Must produce realistic weather and variability


- High impact / Extreme events
 - Mid-latitude storms
 - Tropical cyclones
 - Organized convective clusters

These must form in a free running simulation


- No constraints to observed meteorology
 - It will not produce specific weather events
 - But it will produce similar events

Climatology must be representative of Nature

- It must resemble the real atmosphere
 - Statistically viable climatology
 - An acceptable level of variance for the climate of Earth
- While it will not be exactly the climate of the period simulated, it must be a statistically possible scenario

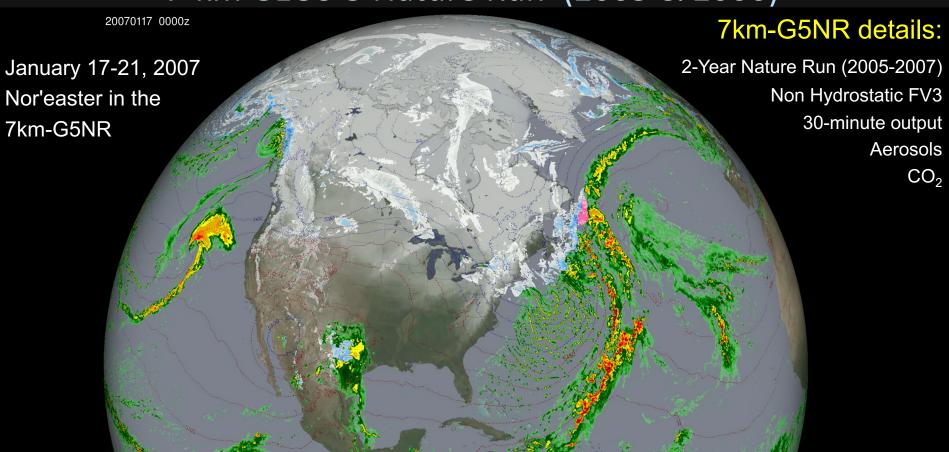
7km-G5NR details:

2-Year Nature Run (2005-2007)

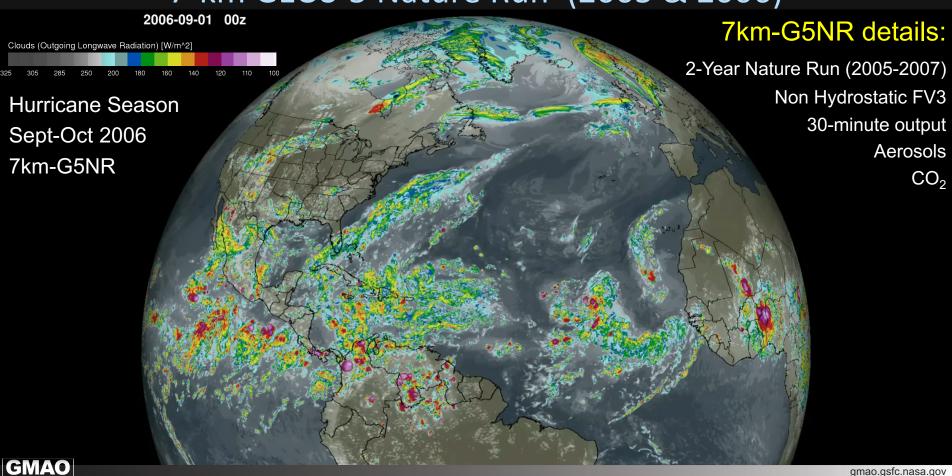
Non Hydrostatic FV3

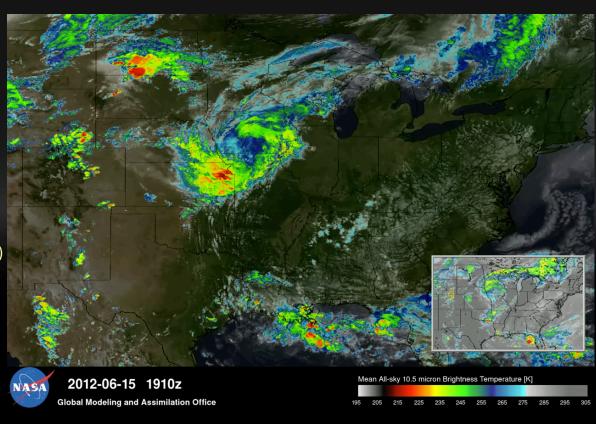
30-minute output

Aerosols

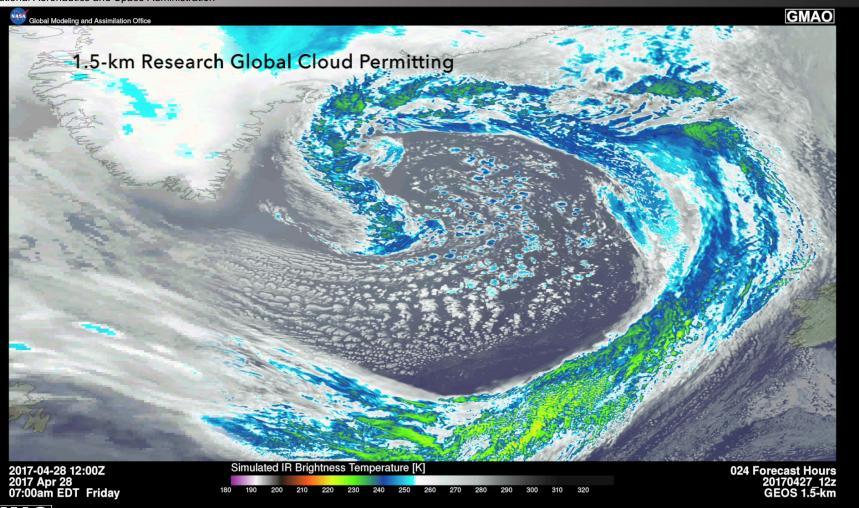

CO₂

Surface Boundary Conditions & Emissions


- 1/8-degree Reynolds/OSTIA SST
- 10-km EDGAR CO₂ emissions
- CASA-GFED at 10-km with MODIS EVI CO₂ land fluxes
- daily QFED fire emissions
- AEROCOM SO₂ emissions and injection heights
- GOCART mixing, and deposition
 [sulfates, dust, and black carbon]
 aerosols radiatively coupled



1.5km GEOS Convection Allowing Model


- Non-Hydrostatic FV3 dynamics
 - Non-monotonic advection schemes
 - 6th order divergence damping
 - Explicit vorticity damping
- Morrison Gettelman Barahona
 - 2-moment cloud microphysics
- RAS convection
 - reduced to just shallow convection
- Turbulence
 - 1st order scheme of Louis (stable PBLs)
 - Non-local K-scheme of Lock (cloud topped BLs)
- GOCART aerosol and chemistry transport
- o Extensive GEOS infrastructure development
 - Memory optimization (SHMEM)
 - I/O server development
 - Asynchronous writing
 - Efficient reading of boundary conditions

Run on 30,240 Intel Xeon Haswell cores

Throughput of 3.5 days/day

